gravatar

jbmere

pn2011

Recently Published

QPC
BN_03
Third trial for the targeted BN
BN_Full_Dependent
BN_QC
First approach to a 2L BN
Estudio de residuos
Test de Kolmogorov - Smirnov para influencia de delta Logg y delta ZETA
Residuos PHOENIX vs CARMENES
Estudio del residuo cuando Carmenes se compara con Phoenix (tanto el teórico como +- 0.1 dex desviados en Log(G)
ES_AP_SS_JOM
A-DIF Feature Creation
Data extraction and feature creation
Salas-Preliminar
Temperature compared between the predicted by the models and Rojas-Ayala.
Temperature compared between the predicted by the models and Rojas-Ayala.
EGG con cor basada en CCF
Gestión Conflictos
JVD_Brain_v2
Publish Document
Los SEMs nuevos
Modelo Entrepreneur 03
CFA MILAN
CFA TUB
Publish Document
Publish Document
Entrepreneur Study
peaks finding
Publish Document
Met_compara_Gaidos_IPAC
Met_compara_Gaidos_IPAC
Publish Document
Publish Document
Publish Document
Publish Document
Publish Document
Publish Document
NemaBosch Nemawashi
Publish Document
JVD_Hospitals
CO2-Energy-GDP
Preliminary study about Mr Quo's data sets
LLP_v2
Learning patterns CPDnA
prep_GA_IPACrv_NT11F2_v2
Prediction of T para IPAC with features from GA. Comparison of T against new values of T provided by LSB
prep_GA_IPACrv_NT11F2_CES_v1
LLP
compara_GA_IRTF_v1
compara_GA_IPAC_v1
prep_GA_IPACrv_NM11F2_v1
Met estimated for IPAC with compensated doppler effects.
prep_GA_IPACrv_NG11F2_v1
G estimations for IPAC dataset with GA
prep_GA_IPACrv_NT11F2_v1
Predicción de T en los IPAC con modelos derivados de los GA pero los IPAC tienen el doppler corregido.
prep_GA_NA31F2_v1
Publish Document TFG
prep_GA_NA21F2_v1
prep_GA_IPAC_NM11F2_v1
BL_GA_TAN
Publish Document
prep_GA_IPAC_NG11F2_v1
IPAC M_stars Log (G) predicted by ML Mid of June 2015
GA_T_IPAC_NT11F2_10
GA based T forecast for IPAC with 10 pixel bandwidth
prep_GA_IPAC_NT11F2-30_v1
Simulación con GA para segmentos de banda de 30 pixels
LKV_v02
prep_GA_case01_NM11F2_v1
LKV_LC_v01
LKV_v01
prep_GA_case01_NG11F2_v1
Log(G) estimations based on different predicting technologies
PMO-HKT_v01
asistencias_v01
prep_GA_case01_NG11F2_v1
prev_01
Análisis preliminar del modelo proporcionado por S Capuz
proc01
Network_9sites_04
Network_full_01
Preparacion_v01
features_01
Feature identification for signal segmentation
H4_01
Internal work
paso3_rf_v1
prep_2014
Data Treatment for BL's samples
Process of video components. VideoComparison Release 01
Comparison between videos
Training Models From GA selected features
It is based on predicting T trained from 5-features from BT-SETTL
Training Models From GA selected features
Training Models From GA selected features Target is T in BT-SETTL for 4 features
Training Models From GA selected features NL SVM for Metalicity Prediction
Training Models From GA selected features for Metalicity Prediction Non Linear. Suppor Vector Machine
Training Models From GA selected features NL RandomForest for Gravity Prediction
Training Models From GA selected features for Gravity Prediction. Nonlinear GA by using RF
HFT_01
Initial steps in HFT by considering technical indexes without memory and short term prediction
Processing data report for JEF station
Initial analysis of data
Ongoing work about engine oil degradation
Work being done Stil preliminary results
M_prep_rep_01v_01
Preliminar analysis of Class M stars
Experimental SNR determination from ELODIE data-set.
Sample report about an ongoing research related to SNR in stellar spectra