Recently Published
Tunner_2
New Format
AQMD_NASA_14
[1] -0.04699109
Call:
lm(formula = X ~ Y)
Coefficients:
(Intercept) Y
652.9742 -0.1539
Call:
lm(formula = X ~ Y)
Residuals:
Min 1Q Median 3Q Max
-652.2 -639.7 -630.5 -608.0 4546.8
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 652.9742 53.0562 12.307 <2e-16 ***
Y -0.1539 0.1057 -1.456 0.146
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1622 on 958 degrees of freedom
(13628 observations deleted due to missingness)
Multiple R-squared: 0.002208, Adjusted R-squared: 0.001167
F-statistic: 2.12 on 1 and 958 DF, p-value: 0.1457
Paired t-test
data: X and Y
t = 10.087, df = 959, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
450.8772 668.6919
sample estimates:
mean of the differences
559.7846
AQMD-NASA-12 (t value 2 star example)
> analyzeFn(X,Y,Z)
[1] 0.9773882
Call:
lm(formula = X ~ Y)
Coefficients:
(Intercept) Y
-0.4584 1.0887
Call:
lm(formula = X ~ Y)
Residuals:
Min 1Q Median 3Q Max
-16.565 -1.319 -0.600 0.075 40.634
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.458448 0.151558 -3.025 0.00254 **
Y 1.088747 0.006615 164.594 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 3.416 on 1268 degrees of freedom
(13318 observations deleted due to missingness)
Multiple R-squared: 0.9553, Adjusted R-squared: 0.9553
F-statistic: 2.709e+04 on 1 and 1268 DF, p-value: < 2.2e-16
Paired t-test
data: X and Y
t = 10.904, df = 1269, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.9156577 1.3174254
sample estimates:
mean of the differences
1.116542
AQMD-NASA 10 (OUTLIER EXAMPLE)
[1] 0.9958773
Call:
lm(formula = X ~ Y)
Coefficients:
(Intercept) Y
0.5412 1.0115
Call:
lm(formula = X ~ Y)
Residuals:
Min 1Q Median 3Q Max
-6.723 -0.304 -0.073 0.209 34.579
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.541187 0.062203 8.7 <2e-16 ***
Y 1.011493 0.002533 399.3 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.406 on 1323 degrees of freedom
(13263 observations deleted due to missingness)
Multiple R-squared: 0.9918, Adjusted R-squared: 0.9918
F-statistic: 1.595e+05 on 1 and 1323 DF, p-value: < 2.2e-16
Paired t-test
data: X and Y
t = 19.592, df = 1324, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.6860663 0.8387476
sample estimates:
mean of the differences
0.762407
Alberta
[1] 0.9997812
Call:
lm(formula = X ~ Y)
Coefficients:
(Intercept) Y
0.1983 1.0702
Call:
lm(formula = X ~ Y)
Residuals:
Min 1Q Median 3Q Max
-4.4977 -0.2360 -0.1181 0.0993 4.4916
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1982856 0.0161458 12.28 <2e-16 ***
Y 1.0702465 0.0005384 1987.90 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.6381 on 1730 degrees of freedom
(12856 observations deleted due to missingness)
Multiple R-squared: 0.9996, Adjusted R-squared: 0.9996
F-statistic: 3.952e+06 on 1 and 1730 DF, p-value: < 2.2e-16
Paired t-test
data: X and Y
t = 17.018, df = 1731, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.7598189 0.9577775
sample estimates:
mean of the differences
0.8587982
North Parksville BC 2
[1] 0.7982435
Call:
lm(formula = X ~ Y)
Coefficients:
(Intercept) Y
0.7178 0.8817
Call:
lm(formula = X ~ Y)
Residuals:
Min 1Q Median 3Q Max
-17.834 -2.495 -1.527 -0.772 122.298
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.71782 0.25652 2.798 0.00517 **
Y 0.88173 0.01282 68.798 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 10.04 on 2695 degrees of freedom
(11891 observations deleted due to missingness)
Multiple R-squared: 0.6372, Adjusted R-squared: 0.6371
F-statistic: 4733 on 1 and 2695 DF, p-value: < 2.2e-16
Paired t-test
data: X and Y
t = -4.2664, df = 2696, p-value = 2.055e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.2227813 -0.4527203
sample estimates:
mean of the differences
-0.8377508
College Ave SF
Call:
lm(formula = X ~ Y)
Coefficients:
(Intercept) Y
-0.3390 0.9748
Call:
lm(formula = X ~ Y)
Residuals:
Min 1Q Median 3Q Max
-82.176 -0.689 0.014 0.696 13.495
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.33899 0.09561 -3.546 0.000407 ***
Y 0.97481 0.00277 351.897 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.844 on 1175 degrees of freedom
(13411 observations deleted due to missingness)
Multiple R-squared: 0.9906, Adjusted R-squared: 0.9906
F-statistic: 1.238e+05 on 1 and 1175 DF, p-value: < 2.2e-16
Paired t-test
data: X and Y
t = -9.0096, df = 1176, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.9405416 -0.6041600
sample estimates:
mean of the differences
-0.7723508
Somerset (ONE DEAD SENSOR EXAMPLE?)
[1] -0.01592085
Call:
lm(formula = X ~ Y)
Coefficients:
(Intercept) Y
9.28658 -0.04811
Call:
lm(formula = X ~ Y)
Residuals:
Min 1Q Median 3Q Max
-9.3 -9.0 -8.5 -4.8 4990.4
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.28658 3.29983 2.814 0.00493 **
Y -0.04811 0.05928 -0.812 0.41710
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 155 on 2598 degrees of freedom
(11988 observations deleted due to missingness)
Multiple R-squared: 0.0002535, Adjusted R-squared: -0.0001313
F-statistic: 0.6587 on 1 and 2598 DF, p-value: 0.4171
Paired t-test
data: X and Y
t = -4.1621, df = 2599, p-value = 3.257e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-19.700392 -7.082235
sample estimates:
mean of the differences
-13.39131
Kirkman Preserve
Call:
lm(formula = X ~ Y)
Residuals:
Min 1Q Median 3Q Max
-3.1508 -0.3445 -0.0572 0.3029 16.2019
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.531042 0.031038 17.11 <2e-16 ***
Y 1.050710 0.001729 607.73 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.7007 on 1697 degrees of freedom
(12889 observations deleted due to missingness)
Multiple R-squared: 0.9954, Adjusted R-squared: 0.9954
F-statistic: 3.693e+05 on 1 and 1697 DF, p-value: < 2.2e-16
Paired t-test
data: X and Y
t = 61.965, df = 1698, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
1.251819 1.333656
sample estimates:
mean of the differences
1.292738
Tunner Drive
[1] 0.9952572
Call:
lm(formula = X ~ Y)
Coefficients:
(Intercept) Y
0.8277 0.9442
Call:
lm(formula = X ~ Y)
Residuals:
Min 1Q Median 3Q Max
-18.492 -0.876 0.015 0.704 44.259
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.82769 0.03020 27.4 <2e-16 ***
Y 0.94421 0.00119 793.5 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.077 on 6015 degrees of freedom
(8571 observations deleted due to missingness)
Multiple R-squared: 0.9905, Adjusted R-squared: 0.9905
F-statistic: 6.296e+05 on 1 and 6015 DF, p-value: < 2.2e-16
Paired t-test
data: X and Y
t = 5.5057, df = 6016, p-value = 3.829e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.1109106 0.2335633
sample estimates:
mean of the differences
0.172237